Kurt Godel

x
x
  • desc

    Kurt Godel: The Worlds Most Incredible Mind

    15:00

    Kurt Godel: The World's Most Incredible Mind.

    Either mathematics is too big for the human mind or the human mind is more than a machine ~ Godel

    Kurt Godel (1931) proved two important things about any axiomatic system rich enough to include all of number theory.

    1) You'll never be able to prove every true result..... you'll never be able to prove every result that is true in your system.

    2) Godel also proved that one of the results that you can never prove is the result that says that the system is consistent. More precisely: You cannot prove the consistency of any mathematical system rich enough to include the known theory of numbers.

    Hence, any consistent mathematical system that is rich enough to include number theory is inherently incomplete.

    Second, one of the propositions whose truth or falsity cannot be proved within the system is precisely the proposition that states that the system is consistent.

    What Godel's proof means, then, is that we can't prove that arithmetic—let alone any more-complicated system—is consistent.

    For 2000 years, mathematics has been the model—the subject—that convinces us that certainty is possible. Yet Now there's no certainty anywhere—not even in mathematics.

    More...


    Goedel's Ontological Proof.

    For those interested in a discussion of Goedel's reasoning for God, then I suggest starting with this heavily annotated work, which I recently stumbled upon.

    scribd.com/doc/95364925/Goedel-s-God-Proof-Annotated-Version

    It's not that God is subject to the Freedom Proof or the Doubt Proof.
    According to Gödel, He's not. But we have to be, or else we are not free. So
    our truth game with God turns into something like Feynman had described.
    Feynman's Gods, every time physicists think they have the rules of the game
    figured out, throw in a new wrinkle. They let people like Feynman make
    progress, but if the Feynmans of the world learn too much, physics will stop
    being the joy and challenge that it is. The Gods don't let that happen.

    Gödel's God has to be very careful about how he lets our universe unfold.
    If the world becomes totally controllable and comprehensible, we'll be God.
    God does not object to that. In fact, according to Gödel, that is our destiny.
    But it is also the end of us as free human beings. And human freedom is an
    essential part of the beauty of God's universe.

    ~ page 251

  • desc

    24/42: Secret History - Kurt Gödel and the Secrets of Genius

    46:55

    The saga continues. It's been a while since I released a video. I hope to have more soon. To keep this project moving, feel free to donate at

  • desc

    Kurt Gödel - from the Limits of understanding

    3:38

    A brief bio of Kurt Gödel from :-
    The Limits of Understanding - World Science Festival

  • desc

    Gödels Incompleteness Theorems

    41:58

    In 1900, in Paris, the International Congress of Mathematicians gathered in a mood of hope and fear. The edifice of maths was grand and ornate but its foundations had been shaken. They were deemed to be inconsistent and possibly paradoxical. At the conference, a young man called David Hilbert set out a plan to rebuild the foundations of maths – to make them consistent, all encompassing and without any hint of a paradox. Hilbert was one of the greatest mathematicians that ever lived, but his plan failed spectacularly because of Kurt Gödel. Gödel proved that there were some problems in maths that were impossible to solve, that the bright clear plain of mathematics was in fact a labyrinth filled with potential paradox. In doing so, Gödel changed the way we understand what mathematics is, and the implications of his work in physics and philosophy take us to the very edge of what we can know. Melvyn Bragg discusses Gödel’s Incompleteness Theorems with Marcus du Sautoy, Professor of Mathematics at Wadham College, University of Oxford; John Barrow, Professor of Mathematical Sciences at the University of Cambridge and Gresham Professor of Geometry and Philip Welch, Professor of Mathematical Logic at the University of Bristol.

    This is from a BBC program called In Our Time. For more information, go to

  • desc

    Kurt Gödel & the Limits of Mathematics

    45:28

    Kurt Gödel and his famous Incompleteness Theorems are discussed by Mark Colyvan, Professor of Philosophy and Director of the Sydney Centre for the Foundations of Science. This is from Key Thinkers (Sydney Ideas).

  • desc

    22/42 The Secrets of Kurt Gödel 1080 HD

    14:43

    for more info.

    This is part 22 of 42. As you may have noticed, I am releasing them totally out of order, but that won't matter. In this part we begin our study of Kurt Gödel. We will focus on Gödel from parts 22-28.

  • desc

    Gödels Incompleteness Theorem - Professor Tony Mann

    6:22

    A short mind-bending trip through the wonderful world of Mathematical Paradoxes: An examination of some recent work on paradoxes by the Austrian-American Mathematician Kurt Gödel. You can watch the full lecture by Professor Tony Mann here:

  • desc

    Kurt Gödel Centenary - Part I

    1:29

    Institute for Advanced Study
    November 17, 2006
    Karl Sigmund (University of Vienna) Solomon Feferman (Stanford University)

    More videos on

  • desc

    Limits of Logic: The Gödel Legacy

    58:16

    Kurt Gödel showed that mathematical thinking cannot be captured in a formal axiomatic reasoning system. What does this deep result mean in practice? What are the limits of computer thinking? Can beauty and creativity and a sense of humor be formalized?

    Introduction by professor Douglas Hofstadter.

  • desc

    THUNK - 27. Gödel and the Black Hole of Mathematics

    5:19

    Kurt Gödel proved that math has an incurable flaw that will plague it, and us, forever. Learn what it is, and why it has to do with everything from your computer to your brain!

    -Links for the Curious-

    A fantastic blog post detailing how the incompleteness theorem can be logically deduced from the halting problem, and vice-versa -

    A lecture by Stephen Hawking about how Gödel's theorem might contain a central truth of physics, namely its inevitable failure -

    A paper detailing how a human brain isn't immune to the incompleteness theorem's effects -

    Alfred Whitehead and Bertrand Russell's Principia Mathematica, a triumph in mathematical rigor -

    Russell's Introduction to Mathematical Philosophy, a fantastic work demonstrating just what sort of thinking was turned upside-down by Gödel's proof -

    Yes, I know that most non-German/Austrian people pronounce it Girdle. That's not quite right; I'm trying to say it closer to how it's pronounced in Gödel's language -

  • desc

    Hitler against Godels Theorem

    3:50

    Hitler faces the awful truth: arithmetic is incomplete.

  • desc

    Kurt Godel, Định lý bất toàn và hệ quả triết học - Phạm Việt Hưng

    1:29:50

    Kurt Godel với Định lý bất toàn và hệ quả triết học của nó - Phạm Việt Hưng

    Nguồn: Book Hunter

  • desc

    Kurt Godel: The Worlds Most Incredible Mind

    15:00

    Kurt Godel: The World's Most Incredible Mind.

    Either mathematics is too big for the human mind or the human mind is more than a machine ~ Godel

    Kurt Godel (1931) proved two important things about any axiomatic system rich enough to include all of number theory.

    1) You'll never be able to prove every true result..... you'll never be able to prove every result that is true in your system.

    2) Godel also proved that one of the results that you can never prove is the result that says that the system is consistent. More precisely: You cannot prove the consistency of any mathematical system rich enough to include the known theory of numbers.

    Hence, any consistent mathematical system that is rich enough to include number theory is inherently incomplete.

    Second, one of the propositions whose truth or falsity cannot be proved within the system is precisely the proposition that states that the system is consistent.

    What Godel's proof means, then, is that we can't prove that arithmetic—let alone any more-complicated system—is consistent.

    For 2000 years, mathematics has been the model—the subject—that convinces us that certainty is possible. Yet Now there's no certainty anywhere—not even in mathematics.

    More...

  • desc

    Les théorèmes dincomplétude de Gödel — Science étonnante #37

    18:28

    En mathématiques, il existera toujours des choses vraies, mais indémontrables. Merci Kurt Gödel...

    Sur mon blog, le billet qui accompagne la vidéo : Vous y trouverez beaucoup de précisions et de compléments.

    La vidéo de Passe-Science :

    Me soutenir sur Tipeee :
    Mon livre :

    Facebook :
    Twitter :

    Abonnez-vous :

  • desc

    Kurt Gödels Incompleteness Theorem and the Origin of the Universe

    9:09

    Perry Marshall, Author of Industrial Ethernet and Communications Engineer Bill Jenkins give a technical Treatment of Information Theory as it relates to DNA and Evolution.

  • desc

    Mathematik zum Anfassen - Gibt es Grenzen der Erkenntnis?

    15:05

  • desc

    El Teorema de Gödel por fin Explicado Fácilmente

    3:01

    Gödel´s theorem easy. El teorema de Gödel explicado de forma fácil.

  • desc

    Encounter with Albert Einstein and Kurt Godel by Vic Shapiro

    1:13

    Victor Shapiro discusses an encounter with Albert Einstein and Kurt Godel in Princeton

  • desc

    Kurt Gödel and the Mathematical Paradox | This Statement is Unprovable

    2:17

    Brief glimpse into Kurt Gödel's incompleteness theorem and the limits to the logical basis of a perfect language system. Text excerpted from Andrew Hodges' wonderful book on Alan Turing.

  • desc

    Kurt Gödel Centenary Full Lectures from the Princeton Institute for Advanced Study

    2:58:07

    My other Gödel videos start with:
    and my Georg Cantor videos start here:

    for more info.

    Held at the Princeton Institute for Advanced Study

    Kurt Godel A Program to Mark the Centenary Year of the Birth of Kurt Gödel was held in Wolfensohn Hall at the Institute for Advanced Study on November 17, 2006. The program, which attracted some three-hundred people, consisted of talks aimed at a general audience on the life and work of Kurt Gödel (1906-1978) and his impact on mathematics, philosophy and computer science.

    Kurt Gödel was among the Institute's first Members in 1933-34, returning for further periods in the 1930s and 1940s before joining the Faculty in 1953. He remained at the Institute until his death in 1978.

    Lectures on this video:

    At Odds with the Zeitgeist: Kurt Gödel's Life and Work
    John W. Dawson, Jr., The Pennsylvania State University
    [He talks about the Leibniz conspiracy at around: 36:00 ]

    Panel Discussion with Speakers starts at: 40:00
    Moderated by Juliette Kennedy, University of Helsinki

    Kurt Gödel and Computer Science starts at 01:19:43
    Avi Wigderson, Institute for Advanced Study

    Karl Sigmund (University of Vienna) starts at 01:57:40

    The Nature and Significance of Gödel's Incompleteness Theorems starts at 02:13:49
    Solomon Feferman, Stanford University

  • desc

    Maths Existential Crisis

    6:55

    Math isn’t perfect, and math can prove it. In this video, we dive into Gödel’s incompleteness theorems, and what they mean for math.

    Created by: Cory Chang
    Produced by: Vivian Liu
    Script Editors: Justin Chen, Brandon Chen, Elaine Chang, Zachary Greenberg

    Special thanks to Ryan O’Donnell, associate professor at Carnegie Mellon University (

    Twitter:



    Extra Resources:
    Ryan O’Donnell’s slide deck:
    Wikipedia Entry:
    Axiomatic Systems:
    Peano Axioms:
    Principle of Explosion:

    Picture credits:








  • desc

    Il prof. Piergiorgio Odifreddi racconta Gödel

    9:39

    Lezione Uninettuno di Logica della Matematica.
    Il Professor Odifreddi riassume i principali risultati di Kurt Gödel.
    source:emule.

  • desc

    Piergiorgio Odifreddi: Le dimostrazioni, Kurt Gödel e Alan Turing e i teoremi di incompletezza

    13:33



    Piergiorgio Odifreddi è un matematico, logico e saggista italiano. I suoi scritti, oltre che di matematica, trattano di divulgazione scientifica, storia della scienza, filosofia, politica, religione, esegesi, filologia e di saggistica varia.


    La logica matematica è il settore della matematica che studia i sistemi formali dal punto di vista del modo di codificare i concetti intuitivi della dimostrazione e di computazione come parte dei fondamenti della matematica. Essa si occupa delle parti della logica che possono essere modellate matematicamente. Altri termini utilizzati spesso nel passato sono logica simbolica (termine contrapposto a logica filosofica) e metamatematica, termine che ora si applica più specificamente a taluni aspetti della teoria della dimostrazione.


    La dimostrazione è una serie di ragionamenti logici che, partendo da una ipotesi, porta necessariamente a una tesi. Una dimostrazione consiste nel verificare, nel senso di mostrarne la ragionevole verità, un predicato, una frase. In logica matematica si dice dimostrazione una successione finita di asserzioni che o sono assiomi o sono ottenute da asserzioni precedenti nella successione mediante l'applicazione del modus ponens. Per dimostrazione di una asserzione ϕ si intende una successione finita costruita in modo tale che l'ultima affermazione della sequenza sia proprio ϕ. Detto in altri termini, la dimostrazione consiste in «una catena di deduzioni attraverso le quali la verità della proposizione che deve essere dimostrata viene derivata dagli assiomi e da proposizioni precedentemente dimostrate»


    Kurt Gödel è stato un matematico, logico e filosofo austriaco naturalizzato statunitense, noto soprattutto per i suoi lavori sull'incompletezza delle teorie matematiche. Gödel è ritenuto uno dei più grandi logici della storia umana insieme ad Aristotele e Gottlob Frege; le sue ricerche ebbero un significativo impatto, oltre che sul pensiero matematico e informatico, anche sul pensiero filosofico del XX secolo.


    Alan Mathison Turing è stato un matematico, logico e crittografo britannico, considerato uno dei padri dell'informatica e uno dei più grandi matematici del XX secolo. Il suo lavoro ebbe vasta influenza sullo sviluppo dell'informatica, grazie alla sua formalizzazione dei concetti di algoritmo e calcolo mediante la macchina di Turing, che a sua volta ha svolto un ruolo significativo nella creazione del moderno computer. Per questi contributi Turing è solitamente considerato il padre della scienza informatica e dell'intelligenza artificiale, da lui teorizzate già negli anni trenta (quando non era ancora stato creato il primo vero computer).


    In logica matematica, i teoremi di incompletezza di Gödel sono due famosi teoremi dimostrati da Kurt Gödel nel 1931. Essi fanno parte dei teoremi limitativi, che precisano cioè le proprietà che i sistemi formali non possono avere.

  • desc

    Gödels First Incompleteness Theorem, Proof Sketch

    6:20

    Kurt Gödel rocked the mathematical world with his incompleteness theorems. With the halting problems, these proofs are made easy!

    Created by: Cory Chang
    Produced by: Vivian Liu
    Script Editor: Justin Chen

    Special thanks to Ryan O’Donnell, associate professor at Carnegie Mellon University (

    Twitter:



    Extra Resources:
    Ryan O’Donnell’s slide deck:
    Wikipedia entry:
    Rules of deductive calculus:
    Proof that square root of 2 is irrational, in Metamath:
    Mizar system:
    Metamath:
    Playlist to previous videos:

  • desc

    Kurt Godel, Định lý bất toàn và hệ quả triết học - Phạm Việt Hưng

    1:29:40

    Nhà báo khoa học Phạm Việt Hưng chia sẻ về Định lý bất toàn của Kurt Godel, người đã được tờ tạp chí danh tiếng Times bình chọn là nhà toán học lớn nhất thế kỷ 20.
    Định lý bất toàn (incompleteness theorem), là một định lý được giới khoa học so sánh với thuyết tương đối của Einstein và nguyên lý bất định của Heisenberg.

    Danh sách các video Big Idea Hunting của BookHunterClub


    Help us caption & translate this video!



    Nguồn: Book Hunter

  • desc

    28/42 Kurt Gödel: Modern Dev. of the Foundations Of Mathematics In Light Of Philosophy

    25:22

    A great Book on Kurt Gödel:

    for an mp3 this video for your iPod.

    This is part 28 of my 42 part series (being released out of order).

    A version of this vid w/out musical soundtrack is here (if you find it distracting):

    Hello, this is Gary Geck of Gary Geck.com. Kurt Gödel has been called the greatest logician since Aristotle and A Genius at odds with the Zeitgeist.

    The following is my reading of Kurt Gödel's 1961 lecture called The modern Development Of The Foundations Of Mathematics In The Light Of Philosophy. As was typical of Gödel's very private philosophical work, the lecture was never delivered. I now will read it in its entirety on youtube or in an mp3 (found at

    It should become very clear that Gödel was a lone voice in his age of logical positivism, skepticism and analytical philosophy such as Harvard's Dr. Willard Quine's variety. Quine of course called the higher reaches of Set Theory mere mathematical recreation...a view clearly at odds with Gödel's. According to Dr. Richard Tieszen of San Jose University, The three philosophers Gödel found most congenial to his own way of thinking were Plato, Leibniz and Husserl. In fact Gödel saw much of Western Thought as being on the wrong path since it had strayed from the influence of Leibniz in the 18th Century. It is surprising that Gödel promotes Kant (albeit in a modified form) with much enthusiasm in this lecture when Kant certainly helped to hasten the demise of Leibnizianism. Kant once called Plato' work 'babble'.

    On an interesting note His few interests were in surrealist and abstract art, his favorite writers included Goethe and Franz Kafka, he enjoyed light classics and some 'pop' music and Disney films, especially Snow White. [source: ]

  • desc

    Gerald Sacks - Reflections on Gödel

    1:19:54

    Lecture given by Gerald Sacks, recounting the life and his experiences of Kurt Gödel

  • desc

    Godels Lasting Legacy

    4:45

    Austrian logician Kurt Gödel’s incompleteness theorems showed us the limitations of mathematics within mathematics. While math is still useful for proving scientific theorems, Gödel transformed the perception of pure mathematics in a way that still makes modern mathematicians uncomfortable. Here, leading thinkers—a mathematician, a philosopher, and a physicist—wrestle, almost literally, with the implications of Gödel’s legacy.

    Watch the full program here:
    Original program date: June 4, 2010

    The World Science Festival gathers great minds in science and the arts to produce live and digital content that allows a broad general audience to engage with scientific discoveries. Our mission is to cultivate a general public informed by science, inspired by its wonder, convinced of its value, and prepared to engage with its implications for the future.

    Subscribe to our YouTube Channel for all the latest from WSF.
    Visit our Website:
    Like us on Facebook:
    Follow us on twitter:

  • desc

    Biografia di Kurt Gödel

    2:57

    Questo è un estratto. Il video completo è al link:

  • desc

    Kurt Godel: The Worlds Most Incredible Mind

    14:55

    Kurt Godel: The World's Most Incredible Mind.

    Either mathematics is too big for the human mind or the human mind is more than a machine ~ Godel

    Kurt Godel (1931) proved two important things about any axiomatic system rich enough to include all of number theory.

    1) You'll never be able to prove every true result..... you'll never be able to prove every result that is true in your system.

    2) Godel also proved that one of the results that you can never prove is the result that says that the system is consistent. More precisely: You cannot prove the consistency of any mathematical system rich enough to include the known theory of numbers.

    Hence, any consistent mathematical system that is rich enough to include number theory is inherently incomplete.

    Second, one of the propositions whose truth or falsity cannot be proved within the system is precisely the proposition that states that the system is consistent.

    What Godel's proof means, then, is that we can't prove that arithmetic—let alone any more-complicated system—is consistent.

    For 2000 years, mathematics has been the model—the subject—that convinces us that certainty is possible. Yet Now there's no certainty anywhere—not even in mathematics.

    More...

  • desc

    Gott bewiesen!

    9:08

    Gödel, Gödel, Gööööödel!

    Manchmal behaupten Gläubige - vor allem Provinzpfarrer und durchgedrehte Evangelikale - , dass
    Gott mathematisch bewiesen worden sei. Meistens haben diese Menschen keine Ahnung, was genau
    damit gemeint ist. Wir wollen euch heute erklären, was genau dahinter steckt, damit ihr dieser
    Behauptung etwas entgegen setzen könnt.

    Musik: Sneaky Snitch Kevin MacLeod (incompetech.com)
    Licensed under Creative Commons: By Attribution 3.0

    Bilder: Openclipart.org / Wikipedia (Gemeinfrei)
    Quellen:






  • desc

    48.5 Gödels Gottesbeweis

    25:39

    Haben Informatiker mit Kurt Gödels Gottesbeweis bewiesen, dass Gott existiert?

    (Aufgenommen am 24.04.2016 mit Matthias, Christian und Nico.)

  • desc

    Peter Koellner: Kurt Gödel Centenary Research Prize Fellowship Lecture

    45:18

    # Peter Koellner's Research Fellowship Prize Lecture @ 2008 (see details below*)
    P.Koellner took this award for his work 'On Reflection Principles' (Post-doctoral category)

    * Kurt Gödel Research Price Fellowship Colloquium (Sunday, April 27, 2008)
    #

    P. Koellner's homepage ::

    # [2006] Gödel Centenary (Kurt Gödel 1906 - 1978)
    **********************************************************************************************
    # Horizons of Truth -
    Logics, Foundations of Mathematics, and the Quest for Understanding the Nature of Knowledge
    Gödel Centenary 2006, Festsaal of the University of Vienna, 27-29 April 2006
    An International Symposium Celebrating the 100th Birthday of Kurt Gödel

    **********************************************************************************************

  • desc

    Un momento fundamental en el pensamiento matemático

    15:20

    Ciencias - Kurt Gödel fue uno de los grandes matemáticos y pensadores del siglo XX. No puede existir ningún filósofo actual del conocimiento que no tenga en cuenta sus aportaciones en el campo de la lógica. Este espacio resume algunos aspectos de su obra y de su biografía.

    PARTICIPANTES: José Leandro María González, coordinador del Grado en Matemáticas, Facultad de Ciencias UNED.

  • desc

    Computer Scientists Prove The Existence of God

    3:35



  • desc

    Jean-Marc Deshouillers - Les théorèmes de Gödel : fin d’un espoir ?

    1:29:52

    En 1931, Kurt Gödel (1906 - 1978) démontrait, dans un article révolutionnaire, qu'un système d'axiomes cohérent et suffisamment expressif est susceptible de générer des énoncés dont la validité ne peut être démontrée dans le cadre des règles mêmes qui gouvernent la formulation de ces énoncés et leurs déductions. Apparemment très technique, ce théorème bouleversait la philosophie des mathématiques, et en particulier la vieille question de leur fondement.

    Jean-Marc Deshouillers, professeur à l'Institut de Mathématiques de Bordeaux, se propose ici de décrire l'avant et l'après Gödel en retraçant l'histoire des théories mathématiques depuis Aristote et Euclide jusqu'au renversement révolutionnaire des fondements mathématiques induit par le théorème d’incomplétude.

    La conférence a été donnée à l'Université Victor Segalen Bordeaux 2 dans le cadre du cycle de conférences L'invité du Mercredi / Saison 2005-2006 sur le thème L'espoir. Service culturel Université Victor Segalen de Bordeaux 2 / DCAM.

  • desc

    Po stopách vědy: Kurt Gödel - Zákony myšlení

    4:18

    Projekt českého Googlu a společnosti Scio s názvem „Po stopách vědy (postopachvedy.cz) uvádí krátké filmy prezentující významné české vědce, jež si vybrala veřejnost. Krátké příběhy jsou kompilací informací ze života osobností, praktických ukázek jejich objevů a přínosu. Cílem je nadchnout mladou generaci k objevování, poznávání, a možná také k volbě povolání vědce či vědkyně, kteří svět obohacují a rozvíjí.
    Projekt je součástí celoročního programu Google pro vzdělávání v Česku.

    Obrázky Kurta Gödela pocházejí z Institutu pro pokročilé studium v americkém Pricetonu (centrum archivů Shelby White a Leon Levy), od fotografů Richarda Arense, Dorothy Morgenstern Thomas & Oskara Morgensterna

  • desc

    28/42 No Music Version Kurt Gödel: Modern Dvmt of the Foundations Of Math In Light Of Philosophy

    25:22

    for an mp3 this video for your iPod.

    This is a version without a musical soundtrack for those who For the original version with a soundtrack please go to

    Hello, this is Gary Geck of Gary Geck.com. Kurt Gödel has been called the greatest logician since Aristotle and A Genius at odds with the Zeitgeist.

    The following is my reading of Kurt Gödel's 1961 lecture called The modern Development Of The Foundations Of Mathematics In The Light Of Philosophy. As was typical of Gödel's very private philosophical work, the lecture was never delivered. I now will read it in its entirety on youtube or in an mp3 (found at

    It should become very clear that Gödel was a lone voice in his age of logical positivism, skepticism and analytical philosophy such as Harvard's Dr. Willard Quine's variety. Quine of course called the higher reaches of Set Theory mere mathematical recreation...a view clearly at odds with Gödel's. According to Dr. Richard Tieszen of San Jose University, The three philosophers Gödel found most congenial to his own way of thinking were Plato, Leibniz and Husserl. In fact Gödel saw much of Western Thought as being on the wrong path since it had strayed from the influence of Leibniz in the 18th Century. It is surprising that Gödel promotes Kant (albeit in a modified form) with much enthusiasm in this lecture when Kant certainly helped to hasten the demise of Leibnizianism. Kant once called Plato' work 'babble'.

    On an interesting note His few interests were in surrealist and abstract art, his favorite writers included Goethe and Franz Kafka, he enjoyed light classics and some 'pop' music and Disney films, especially Snow White. [source: ]

  • desc

    Phạm Việt Hưng- Kurt Godel với Định lý bất toàn và hệ quả triết học của nó -Phần 1

    22:34

    Nhà báo khoa học Phạm Việt Hưng chia sẻ về Định lý bất toàn của Kurt Godel, người đã được tờ tạp chí danh tiếng Times bình chọn là nhà toán học lớn nhất thế kỷ 20.
    Định lý bất toàn (incompleteness theorem), là một định lý được giới khoa học so sánh với thuyết tương đối của Einstein và nguyên lý bất định của Heisenberg.

    Tham khảo
    wikipedia.org

    Danh sách các video Big Idea Hunting của BookHunterClub


    Help us caption & translate this video!

  • desc

    Godel for Goldilocks: Godels First Incompleteness Theorem

    37:56

    Godel's first incompleteness theorem, requiring minimal background. You only need to know what an integer is, what a function is and that a computer program is a finite series of statements written in some finite alphabet.

  • desc

    Jacques Bouveresse Kurt Gödel : mathématiques, logique et philosophie 1/13

    54:17

  • desc

    Kurt Godel: Is Mathematics Syntax of Langauge

    30:37

    for the audio only of this recording.

  • desc

    DIOS EXISTE! | Mister DBunker

    9:13

    Hace un año se llevó a cabo este experimento basado en teorema de Kurt Gödel en el que se demostraba la existencia de Dios.
    Cierto? Falso?
    Hoy despejaremos dudas.

    JOIN VSP GROUP PARTNER PROGRAM:

  • desc

    Phạm Việt Hưng- Kurt Godel với Định lý bất toàn và hệ quả triết học của nó -Phần 3

    22:38

    Nhà báo khoa học Phạm Việt Hưng chia sẻ về Định lý bất toàn của Kurt Godel, người đã được tờ tạp chí danh tiếng Times bình chọn là nhà toán học lớn nhất thế kỷ 20.
    Định lý bất toàn (incompleteness theorem), là một định lý được giới khoa học so sánh với thuyết tương đối của Einstein và nguyên lý bất định của Heisenberg.

    Tham khảo
    wikipedia.org

    Danh sách các video Big Idea Hunting của BookHunterClub


    Help us caption & translate this video!

  • desc

    Janna Levin - teorema de incompletitud de Gödel

    2:50

    Janna Levin (n.1967) es una cosmóloga teórica norteamericana.
    Obtuvo un doctorado en física teórica del MIT en 1993, y una Licenciatura en Ciencias de la Astronomía y Física con especialización en Filosofía, de Barnard College en 1988.

    Publicado el 30 de oct. de 2013

    Es uno de los clásicos silogismos que demuestran la existencia de Dios, explicado en este caso tanto con nociones filosóficas como científicas, y al alcance de todos en habla española.

    Teorema de Godel
    Científicos prueban informáticamente que existe Dios
    MADRID, 28 Oct. 13 / 03:16 pm (ACI/Europa Press).- Los científicos Christoph Benzmüller, de la Universidad Libre de Berlín, y Bruno Woltzenlogel, de la Universidad Técnica de Viena, han probado informáticamente el teorema de Gödel, desarrollado a finales del siglo pasado por el matemático austríaco Kurt Gödel y que concluye que en base a los principios de la lógica debe existir Dios.

    A finales de los años 70 Gödel argumentó que, por definición, no puede existir nada más grande de un ser supremo, y propuso mediante argumentaciones lógico-matemático la existencia de Dios. Su intención era demostrar que el llamado 'argumento ontológico' --de un modo puramente lógico-- de la existencia de Dios es válido.

    Ahora, los científicos han demostrado, con un MacBook ordinario, que su argumentación era matemáticamente correcta. En este sentido, los investigadores han subrayado que este trabajo, publicado en 'Arxiv.org', tiene más que ver con la demostración de que una tecnología superior puede ayudar a la ciencia, que con la teoría de que Dios exista o no.

    Así, han apuntado que lo importante es que lo que han logrado a través de los ordenadores supone un éxito del genial razonamiento de Gödel. Benzmüller ha señalado que la prueba ontológica era, más que cualquier otra cosa, un buen ejemplo de algo inaccesible en las matemáticas o de la inteligencia artificial, que se ha resuelto con la tecnología actual.

    En su opinión, el hecho de que la formalización de estos teoremas complicados se puedan realizar con ordenadores no profesionales abre todo tipo de posibilidades. El científico ha señalado que es totalmente increíble que el Teorema de Gödel se pueda probar de forma automática en pocos segundos o incluso menos en un portátil estándar.

  • desc

    Consistencia Relativa. Teorema de Gödel -Introducción

    11:34

    El teorema (los teoremas) de Gödel fue un parteaguas en la lógica, la matemática y la filosofía. Todo empezó buscando un terreno sólido sobre el cual fundamentar la matemática, tema que desde el siglo XIX se veía venir con los nuevos descubrimientos en matemáticas y geometría.

    Laire Rebdan.
    Mi canal de YouTube :
    Mi página de memes:
    Mi página de Facebook:

  • desc

    Terence Mckenna heckled about science, maths, probability theory and Kurt Gödel

    14:52

    This is an excerpt from a ten hour talk Mckenna gave called the tree of knowledge, see it here:

    Godels incompleteness theorem:

    Please like our facebook community predicated on Mckenna type views and psychedelic culture:

  • desc

    Kurt Gödel

    2:52

    Matemático austriaco

  • desc

    AISSQ2015: Experiments in Computational metaphysics: Gödels Proof of God

    1:2:13

    All India Students' Conference on Science and Spiritual Quest 2015 held a IIT Kharagpur
    Speaker: Prof. Christoph Benzmuller, FU Berlin

Share Playlist





Advertisements